Lemmas about squarefreeness of natural numbers #
A number is squarefree when it is not divisible by any squares except the squares of units.
Main Results #
Nat.squarefree_iff_nodup_primeFactorsList
: A positive natural numberx
is squarefree iff the listfactors x
has no duplicate factors.
Tags #
squarefree, multiplicity
theorem
Nat.factorization_eq_one_of_squarefree
{n p : ℕ}
(hn : Squarefree n)
(hp : Prime p)
(hpn : p ∣ n)
:
theorem
Nat.squarefree_of_factorization_le_one
{n : ℕ}
(hn : n ≠ 0)
(hn' : ∀ (p : ℕ), n.factorization p ≤ 1)
:
Returns the smallest prime factor p
of n
such that p^2 ∣ n
, or none
if there is no
such p
(that is, n
is squarefree). See also Nat.squarefree_iff_minSqFac
.
Equations
Instances For
The correctness property of the return value of minSqFac
.
- If
none
, thenn
is squarefree; - If
some d
, thend
is a minimal square factor ofn
Equations
Instances For
Squarefree
is multiplicative. Note that the → direction does not require hmn
and generalizes to arbitrary commutative monoids. See Squarefree.of_mul_left
and
Squarefree.of_mul_right
above for auxiliary lemmas.
theorem
Nat.prod_primeFactors_sdiff_of_squarefree
{n : ℕ}
(hn : Squarefree n)
{t : Finset ℕ}
(ht : t ⊆ n.primeFactors)
: