Orders on a sum type #
This file defines the disjoint sum and the linear (aka lexicographic) sum of two orders and
provides relation instances for Sum.LiftRel
and Sum.Lex
.
We declare the disjoint sum of orders as the default set of instances. The linear order goes on a type synonym.
Main declarations #
Sum.LE
,Sum.LT
: Disjoint sum of orders.Sum.Lex.LE
,Sum.Lex.LT
: Lexicographic/linear sum of orders.
Notation #
α ⊕ₗ β
: The linear sum ofα
andβ
.
Unbundled relation classes #
instance
Sum.instIsAntisymmLiftRel
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsAntisymm α r]
[IsAntisymm β s]
:
IsAntisymm (α ⊕ β) (LiftRel r s)
instance
Sum.instIsAntisymmLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsAntisymm α r]
[IsAntisymm β s]
:
IsAntisymm (α ⊕ β) (Lex r s)
instance
Sum.instIsTrichotomousLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsTrichotomous α r]
[IsTrichotomous β s]
:
IsTrichotomous (α ⊕ β) (Lex r s)
instance
Sum.instIsWellOrderLex
{α : Type u_1}
{β : Type u_2}
(r : α → α → Prop)
(s : β → β → Prop)
[IsWellOrder α r]
[IsWellOrder β s]
:
IsWellOrder (α ⊕ β) (Lex r s)
Disjoint sum of two orders #
Equations
- Sum.instPreorderSum = Preorder.mk ⋯ ⋯ ⋯
instance
Sum.instPartialOrder
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
:
PartialOrder (α ⊕ β)
Equations
instance
Sum.noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[NoMinOrder β]
:
NoMinOrder (α ⊕ β)
instance
Sum.noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder α]
[NoMaxOrder β]
:
NoMaxOrder (α ⊕ β)
@[simp]
@[simp]
instance
Sum.denselyOrdered
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
:
DenselyOrdered (α ⊕ β)
Linear sum of two orders #
The linear sum of two orders
Equations
- Sum.Lex.«term_⊕ₗ_» = Lean.ParserDescr.trailingNode `Sum.Lex.«term_⊕ₗ_» 30 0 (Lean.ParserDescr.binary `andthen (Lean.ParserDescr.symbol " ⊕ₗ ") (Lean.ParserDescr.cat `term 29))
Instances For
instance
Sum.Lex.preorder
{α : Type u_1}
{β : Type u_2}
[Preorder α]
[Preorder β]
:
Preorder (_root_.Lex (α ⊕ β))
Equations
- Sum.Lex.preorder = Preorder.mk ⋯ ⋯ ⋯
instance
Sum.Lex.partialOrder
{α : Type u_1}
{β : Type u_2}
[PartialOrder α]
[PartialOrder β]
:
PartialOrder (_root_.Lex (α ⊕ β))
Equations
instance
Sum.Lex.linearOrder
{α : Type u_1}
{β : Type u_2}
[LinearOrder α]
[LinearOrder β]
:
LinearOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.orderBot
{α : Type u_1}
{β : Type u_2}
[LE α]
[OrderBot α]
[LE β]
:
OrderBot (_root_.Lex (α ⊕ β))
The lexicographical bottom of a sum is the bottom of the left component.
Equations
instance
Sum.Lex.orderTop
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[OrderTop β]
:
OrderTop (_root_.Lex (α ⊕ β))
The lexicographical top of a sum is the top of the right component.
Equations
instance
Sum.Lex.boundedOrder
{α : Type u_1}
{β : Type u_2}
[LE α]
[LE β]
[OrderBot α]
[OrderTop β]
:
BoundedOrder (_root_.Lex (α ⊕ β))
Equations
instance
Sum.Lex.noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[NoMinOrder β]
:
NoMinOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder α]
[NoMaxOrder β]
:
NoMaxOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMinOrder_of_nonempty
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMinOrder α]
[Nonempty α]
:
NoMinOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.noMaxOrder_of_nonempty
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[NoMaxOrder β]
[Nonempty β]
:
NoMaxOrder (_root_.Lex (α ⊕ β))
instance
Sum.Lex.denselyOrdered_of_noMaxOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
[NoMaxOrder α]
:
DenselyOrdered (_root_.Lex (α ⊕ β))
instance
Sum.Lex.denselyOrdered_of_noMinOrder
{α : Type u_1}
{β : Type u_2}
[LT α]
[LT β]
[DenselyOrdered α]
[DenselyOrdered β]
[NoMinOrder β]
:
DenselyOrdered (_root_.Lex (α ⊕ β))
Order isomorphisms #
Equiv.sumComm
promoted to an order isomorphism.
Equations
- OrderIso.sumComm α β = { toEquiv := Equiv.sumComm α β, map_rel_iff' := ⋯ }
Instances For
Equiv.sumAssoc
promoted to an order isomorphism.
Equations
- OrderIso.sumAssoc α β γ = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := ⋯ }
Instances For
Equiv.SumAssoc
promoted to an order isomorphism.
Equations
- OrderIso.sumLexAssoc α β γ = { toEquiv := Equiv.sumAssoc α β γ, map_rel_iff' := ⋯ }
Instances For
WithBot α
is order-isomorphic to PUnit ⊕ₗ α
, by sending ⊥
to Unit
and ↑a
to
a
.
Equations
- WithBot.orderIsoPUnitSumLex = { toEquiv := (Equiv.optionEquivSumPUnit α).trans ((Equiv.sumComm α PUnit.{?u.21 + 1}).trans toLex), map_rel_iff' := ⋯ }
Instances For
@[simp]
WithTop α
is order-isomorphic to α ⊕ₗ PUnit
, by sending ⊤
to Unit
and ↑a
to
a
.
Equations
- WithTop.orderIsoSumLexPUnit = { toEquiv := (Equiv.optionEquivSumPUnit α).trans toLex, map_rel_iff' := ⋯ }
Instances For
@[simp]