Polynomial Functor #
-- TODO: there are various sorry
-carrying proofs in below which require instances of
CartesianExponentiable
for various constructions on morphisms. They need to be defined in
Poly.Exponentiable
.
structure
MvPoly
{C : Type u_1}
[CategoryTheory.Category.{u_2, u_1} C]
[CategoryTheory.Limits.HasPullbacks C]
(I O : C)
:
Type (max u_1 u_2)
P : MvPoly I O
is a multivariable polynomial with input variables in I
,
output variables in O
, and with arities E
dependent on I
.
- E : C
- B : C
- exp : CartesianExponentiable self.p
Instances For
def
MvPoly.id
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
MvPoly I I
The identity polynomial in many variables.
Equations
- MvPoly.id I = { E := I, B := I, i := CategoryTheory.CategoryStruct.id I, p := CategoryTheory.CategoryStruct.id I, exp := CartesianExponentiable.id, o := CategoryTheory.CategoryStruct.id I }
Instances For
@[simp]
theorem
MvPoly.id_o
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
@[simp]
theorem
MvPoly.id_p
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
@[simp]
theorem
MvPoly.id_exp_adj_counit_app_right_down_down
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
(Y : CategoryTheory.Over I)
:
@[simp]
theorem
MvPoly.id_exp_adj_unit_app_right_down_down
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
(X : CategoryTheory.Over I)
:
@[simp]
theorem
MvPoly.id_exp_adj_unit_app_left
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
(X : CategoryTheory.Over I)
:
(CartesianExponentiable.adj.unit.app X).left = CategoryTheory.CategoryStruct.comp (CategoryTheory.Adjunction.id.unit.app X).left
((CategoryTheory.Adjunction.equivHomsetLeftOfNatIso (CategoryTheory.baseChange.id I))
(CategoryTheory.CategoryStruct.id ((Δ_ CategoryTheory.CategoryStruct.id I).obj X))).left
@[simp]
theorem
MvPoly.id_E
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
@[simp]
theorem
MvPoly.id_i
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
@[simp]
theorem
MvPoly.id_B
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
:
@[simp]
theorem
MvPoly.id_exp_adj_counit_app_left
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
(Y : CategoryTheory.Over I)
:
instance
MvPoly.instCartesianExponentiableTo
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
[CategoryTheory.Limits.HasInitial C]
(X : C)
:
Given an object X
, The unique map initial.to X : ⊥_ C ⟶ X
is exponentiable.
Equations
- MvPoly.instCartesianExponentiableTo X = { functor := { obj := sorry, map := fun {X_1 Y : CategoryTheory.Over (⊥_ C)} => sorry, map_id := ⋯, map_comp := ⋯ }, adj := sorry }
def
MvPoly.const
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O : C}
[CategoryTheory.Limits.HasInitial C]
(A : C)
[CategoryTheory.Limits.HasBinaryProduct O A]
:
MvPoly I O
The constant polynomial in many variables: for this we need the initial object.
Equations
- MvPoly.const A = { E := ⊥_ C, B := O ⨯ A, i := CategoryTheory.Limits.initial.to I, p := CategoryTheory.Limits.initial.to (O ⨯ A), exp := inferInstance, o := CategoryTheory.Limits.prod.fst }
Instances For
def
MvPoly.monomial
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O E : C}
(i : E ⟶ I)
(p : E ⟶ O)
[CartesianExponentiable p]
:
MvPoly I O
The monomial polynomial in many variables.
Equations
- MvPoly.monomial i p = { E := E, B := O, i := i, p := p, exp := inferInstance, o := CategoryTheory.CategoryStruct.id O }
Instances For
def
MvPoly.sum
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O : C}
[CategoryTheory.Limits.HasBinaryCoproducts C]
(P Q : MvPoly I O)
:
MvPoly I O
The sum of two polynomials in many variables.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
MvPoly.prod
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O : C}
[CategoryTheory.Limits.HasBinaryProducts C]
(P Q : MvPoly I O)
:
MvPoly I O
The product of two polynomials in many variables.
Instances For
def
MvPoly.functor
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O : C}
(P : MvPoly I O)
:
Instances For
def
MvPoly.apply
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I O : C}
(P : MvPoly I O)
[CartesianExponentiable P.p]
:
Instances For
def
MvPoly.id_apply
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
(I : C)
{X : C}
(q : X ⟶ I)
:
Equations
- MvPoly.id_apply I q = { hom := id (id { left := id sorry, right := sorry, w := ⋯ }), inv := sorry, hom_inv_id := ⋯, inv_hom_id := ⋯ }
Instances For
def
MvPoly.pullback_counit
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I J K : C}
(P : MvPoly I J)
(Q : MvPoly J K)
:
Equations
Instances For
def
MvPoly.comp
{C : Type u_2}
[CategoryTheory.Category.{u_3, u_2} C]
[CategoryTheory.Limits.HasPullbacks C]
{I J K : C}
(P : MvPoly I J)
(Q : MvPoly J K)
:
MvPoly I K