Documentation

GroupoidModel.Groupoids.Pi

theorem hcongr_fun {α α' : Type u} ( : α α') (β : αType v) (β' : α'Type v) ( : β β') (f : (x : α) → β x) (f' : (x : α') → β' x) (hf : f f') {x : α} {x' : α'} (hx : x x') :
f x f' x'
theorem CategoryTheory.Functor.Iso.whiskerLeft_inv_hom_heq {C : Type u} [Category.{v, u} C] {D : Type u₁} [Category.{v₁, u₁} D] {E : Type u₂} [Category.{v₂, u₂} E] (F : C ≅≅ D) (G H : Functor D E) (η : G H) :
(F.inv.comp F.hom).whiskerLeft η η
theorem CategoryTheory.Functor.Iso.whiskerLeft_hom_inv_heq {C : Type u} [Category.{v, u} C] {D : Type u₁} [Category.{v₁, u₁} D] {E : Type u₂} [Category.{v₂, u₂} E] (F : D ≅≅ C) (G H : Functor D E) (η : G H) :
(F.hom.comp F.inv).whiskerLeft η η
def CategoryTheory.Grpd.functorIsoOfIso {A B : Grpd} (F : A B) :
A ≅≅ B
Equations
Instances For
    def CategoryTheory.Grpd.Functor.iso {Γ : Type u} [Groupoid Γ] (A : Functor Γ Grpd) {x y : Γ} (f : x y) :
    (A.obj x) ≅≅ (A.obj y)
    Equations
    Instances For
      def CategoryTheory.Grpd.Functor.iso_hom {Γ : Type u} [Groupoid Γ] (A : Functor Γ Grpd) {x y : Γ} (f : x y) :
      (iso A f).hom = A.map f
      Equations
      • =
      Instances For
        def CategoryTheory.Grpd.Functor.iso_inv {Γ : Type u} [Groupoid Γ] (A : Functor Γ Grpd) {x y : Γ} (f : x y) :
        (iso A f).inv = A.map (inv f)
        Equations
        • =
        Instances For
          @[simp]
          theorem CategoryTheory.Grpd.Functor.iso_id {Γ : Type u} [Groupoid Γ] (A : Functor Γ Grpd) (x : Γ) :
          @[simp]
          theorem CategoryTheory.Grpd.Functor.iso_comp {Γ : Type u} [Groupoid Γ] (A : Functor Γ Grpd) {x y z : Γ} (f : x y) (g : y z) :
          @[simp]
          theorem CategoryTheory.Grpd.Functor.iso_naturality {Γ : Type u} [Groupoid Γ] {Δ : Type u₁} [Groupoid Δ] (A : Functor Γ Grpd) (σ : Functor Δ Γ) {x y : Δ} (f : x y) :
          iso (σ.comp A) f = iso A (σ.map f)
          theorem CategoryTheory.Grpd.Functor.hcongr_obj {C C' D D' : Grpd} (hC : C = C') (hD : D = D') {F : Functor C D} {F' : Functor C' D'} (hF : F F') {x : C} {x' : C'} (hx : x x') :
          F.obj x F'.obj x'
          theorem CategoryTheory.Grpd.whiskerLeft_hcongr_right {C : Type u_1} {D : Type u_2} [Category.{u_3, u_1} C] [Category.{u_4, u_2} D] {E E' : Grpd} (hE : E E') (F : Functor C D) {G H : Functor D E} {G' H' : Functor D E'} (hG : G G') (hH : H H') {α : G H} {α' : G' H'} ( : α α') :
          theorem CategoryTheory.Grpd.comp_hcongr {C C' D D' E E' : Grpd} (hC : C C') (hD : D D') (hE : E E') {F : Functor C D} {F' : Functor C' D'} {G : Functor D E} {G' : Functor D' E'} (hF : F F') (hG : G G') :
          F.comp G F'.comp G'
          theorem CategoryTheory.Grpd.NatTrans.hext {X X' Y Y' : Grpd} (hX : X = X') (hY : Y = Y') {F G : Functor X Y} {F' G' : Functor X' Y'} (hF : F F') (hG : G G') (α : F G) (α' : F' G') (happ : ∀ (x : X), α.app x α'.app ((eqToHom hX).obj x)) :
          α α'
          @[reducible, inline]
          abbrev CategoryTheory.Section {A : Type u_1} {B : Type u_2} [Category.{u_3, u_1} A] [Category.{u_4, u_2} B] (F : Functor B A) :
          Type (max (max (max u_4 u_3) u_2) u_1)
          Equations
          Instances For
            theorem CategoryTheory.ObjectProperty.ι_mono {T C : Type u} [Category.{v, u} C] [Category.{v, u} T] {Z : CProp} (f g : Functor T (FullSubcategory Z)) (e : f.comp (ι Z) = g.comp (ι Z)) :
            f = g
            theorem CategoryTheory.Grpd.ObjectProperty.FullSubcategory.congr {A A' : Grpd} (hA : A A') (P : ObjectProperty A) (P' : ObjectProperty A') (hP : P P') (a : A) (a' : A') (ha : a a') (ha✝ : P a) (ha' : P' a') :
            { obj := a, property := ha✝ } { obj := a', property := ha' }
            theorem CategoryTheory.Grpd.ObjectProperty.FullSubcategory.hext {A A' : Grpd} (hA : A A') (P : ObjectProperty A) (P' : ObjectProperty A') (hP : P P') (p : P.FullSubcategory) (p' : P'.FullSubcategory) (hp : p.obj p'.obj) :
            p p'

            The functor that, on objects G : A.obj x ⥤ B.obj x acts by creating the map on the right, by taking the inverse of f : x ⟶ y in the groupoid A f A x --------> A y | . | | | . G | | conjugating A B f G | . V V B x --------> B y B f

            Equations
            Instances For
              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                Equations
                • One or more equations did not get rendered due to their size.
                Instances For

                  If s : piObj B x then the underlying functor is of the form s : A x ⥤ sigma A B x and it is a section of the forgetful functor sigma A B x ⥤ A x. This theorem states that conjugating A f⁻¹ ⋙ s ⋙ sigma A B f⁻¹ : A y ⥤ sigma A B y using some f : x ⟶ y produces a section of the forgetful functor sigma A B y ⥤ A y.

                  The functorial action of pi on a morphism f : x ⟶ y in Γ is given by "conjugation". Since piObj B x is a full subcategory of sigma A B x ⥤ A x, we obtain the action piMap : piObj B x ⥤ piObj B y as the induced map in the following diagram the inclusion Section.ι piObj B x ⥤ (A x ⥤ sigma A B x) ⋮ || ⋮ || conjugating A (sigma A B) f VV VV piObj B y ⥤ (A y ⥤ sigma A B y)

                  Equations
                  • One or more equations did not get rendered due to their size.
                  Instances For
                    theorem GroupoidModel.FunctorOperation.piMap_map {Γ : Type u₂} [CategoryTheory.Groupoid Γ] (A : CategoryTheory.Functor Γ CategoryTheory.Grpd) (B : CategoryTheory.Functor A.Groupoidal CategoryTheory.Grpd) {x y : Γ} (f : x y) (s1 s2 : (piObj B x)) (η : s1 s2) :
                    (piMap A B f).map η = (conjugating A (sigma A B) f).map η

                    The square commutes

                    piObj B x ⥤ (A x ⥤ sigma A B x) ⋮ || piMap⋮ || conjugating A (sigma A B) f VV VV piObj B y ⥤ (A y ⥤ sigma A B y)

                    The formation rule for Π-types for the natural model smallU as operations between functors

                    Equations
                    • One or more equations did not get rendered due to their size.
                    Instances For

                      Let Γ be a category. For any pair of functors A : Γ ⥤ Grpd and B : ∫(A) ⥤ Grpd, and any "term of pi", meaning a functor f : Γ ⥤ PGrpd satisfying f ⋙ forgetToGrpd = pi A B : Γ ⥤ Grpd, there is a "term of B" inversion : Γ ⥤ PGrpd such that inversion ⋙ forgetToGrpd = B.

                      Equations
                      • One or more equations did not get rendered due to their size.
                      Instances For
                        Equations
                        • One or more equations did not get rendered due to their size.
                        Instances For

                          The formation rule for Π-types for the natural model smallU

                          Equations
                          Instances For

                            The introduction rule for Π-types for the natural model smallU

                            Equations
                            Instances For