Documentation

GroupoidModel.Russell_PER_MS.UHom

Morphisms of natural models, and Russell-universe embeddings.

def NaturalModelBase.Hom.comp {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] {M N O : NaturalModelBase Ctx} (α : M.Hom N) (β : N.Hom O) :
M.Hom O
Equations
def NaturalModelBase.Hom.comp_assoc {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] {M N O P : NaturalModelBase Ctx} (α : M.Hom N) (β : N.Hom O) (γ : O.Hom P) :
(α.comp β).comp γ = α.comp (β.comp γ)
Equations

Morphism into the representable natural transformation M from the pullback of M along a type.

Equations

Given M : NaturalModelBase, a semantic type A : y(Γ) ⟶ M.Ty, and a substitution σ : Δ ⟶ Γ, construct a Hom for the substitution A[σ].

Equations
  • One or more equations did not get rendered due to their size.

A Russell embedding is a hom of natural models M ⟶ N such that types in M correspond to terms of a universe U in N.

These don't form a category since UHom.id M is essentially Type : Type in M.

Equations
Equations
def NaturalModelBase.UHom.comp_assoc {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] {M N O P : NaturalModelBase Ctx} (α : M.UHom N) (β : N.UHom O) (γ : O.UHom P) :
(α.comp β).comp γ = α.comp (β.comp γ)
Equations

A sequence of Russell embeddings.

Instances For
Equations
@[irreducible]
def NaturalModelBase.UHomSeq.hom {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeq Ctx) (i j : ) (ij : i < j := by omega) (jlen : j < s.length + 1 := by get_elem_tactic) :

Composition of embeddings between i and j in the chain.

Equations
  • One or more equations did not get rendered due to their size.
@[irreducible]
theorem NaturalModelBase.UHomSeq.hom_comp_trans {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeq Ctx) (i j k : ) (ij : i < j) (jk : j < k) (klen : k < s.length + 1) :
(s.hom i j ij ).comp (s.hom j k jk klen) = s.hom i k klen

The data of Π and λ term formers for every i, j ≤ length + 1, interpreting

Γ ⊢ᵢ A type  Γ.A ⊢ⱼ B type
--------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ ΠA. B type

and

Γ ⊢ᵢ A type  Γ.A ⊢ⱼ t : B
-------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. t : ΠA. B

This amounts to O(length²) data. One might object that the same formation rules could be modeled with O(length) data: etc etc

However, with O(length²) data we can use Lean's own type formers directly, rather than using Π (ULift A) (ULift B). The interpretations of types are thus more direct.

Instances For
Equations
Equations
def NaturalModelBase.UHomSeqPis.Pi_pbs {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeqPis Ctx) (i : ) (ilen : i < s.length + 1 := by get_elem_tactic) :
CategoryTheory.IsPullback (s.lams i ilen) (s[i].Ptp.map s[i].tp) s[i].tp (s.Pis i ilen)
Equations
Γ ⊢ᵢ A  Γ.A ⊢ⱼ B
-----------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ ΠA. B
Equations
Γ ⊢ᵢ A  Γ.A ⊢ⱼ t : B
-------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. t : ΠA. B
Equations
Γ ⊢ᵢ A  Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B
-----------------------------
Γ.A ⊢ⱼ unlam f : B
Equations
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B  Γ ⊢ᵢ a : A
---------------------------------
Γ ⊢ⱼ f a : B[id.a]
Equations
@[simp]
theorem NaturalModelBase.UHomSeqPis.mkLam_unLam {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeqPis Ctx) {i j : } (ilen : i < s.length + 1) (jlen : j < s.length + 1) {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ s[i].Ty) (B : CategoryTheory.yoneda.obj (s[i].ext A) s[j].Ty) (f : CategoryTheory.yoneda.obj Γ s[i j].Tm) (f_tp : CategoryTheory.CategoryStruct.comp f s[i j].tp = s.mkPi ilen jlen A B) :
s.mkLam ilen jlen A (s.unLam ilen jlen A B f f_tp) = f
@[simp]
theorem NaturalModelBase.UHomSeqPis.unLam_mkLam {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeqPis Ctx) {i j : } (ilen : i < s.length + 1) (jlen : j < s.length + 1) {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ s[i].Ty) (B : CategoryTheory.yoneda.obj (s[i].ext A) s[j].Ty) (t : CategoryTheory.yoneda.obj (s[i].ext A) s[j].Tm) (t_tp : CategoryTheory.CategoryStruct.comp t s[j].tp = B) (lam_tp : CategoryTheory.CategoryStruct.comp (s.mkLam ilen jlen A t) s[i j].tp = s.mkPi ilen jlen A B) :
s.unLam ilen jlen A B (s.mkLam ilen jlen A t) lam_tp = t
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B
--------------------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. f[↑] v₀ : ΠA. B
Equations
  • One or more equations did not get rendered due to their size.
@[simp]
theorem NaturalModelBase.UHomSeqPis.mkApp_mkLam {Ctx : Type u} [CategoryTheory.SmallCategory Ctx] [CategoryTheory.ChosenFiniteProducts Ctx] (s : UHomSeqPis Ctx) {i j : } (ilen : i < s.length + 1) (jlen : j < s.length + 1) {Γ : Ctx} (A : CategoryTheory.yoneda.obj Γ s[i].Ty) (B : CategoryTheory.yoneda.obj (s[i].ext A) s[j].Ty) (t : CategoryTheory.yoneda.obj (s[i].ext A) s[j].Tm) (t_tp : CategoryTheory.CategoryStruct.comp t s[j].tp = B) (lam_tp : CategoryTheory.CategoryStruct.comp (s.mkLam ilen jlen A t) s[i j].tp = s.mkPi ilen jlen A B) (a : CategoryTheory.yoneda.obj Γ s[i].Tm) (a_tp : CategoryTheory.CategoryStruct.comp a s[i].tp = A) :
s.mkApp ilen jlen A B (s.mkLam ilen jlen A t) lam_tp a a_tp = s[i].inst A t a a_tp
Γ ⊢ᵢ A  Γ.A ⊢ⱼ t : B  Γ ⊢ᵢ a : A
--------------------------------
Γ.A ⊢ⱼ (λA. t) a ≡ t[a] : B[a]