Morphisms of natural models, and Russell-universe embeddings.
- pb : CategoryTheory.IsPullback self.mapTm M.tp N.tp self.mapTy
Equations
- NaturalModelBase.Hom.id M = { mapTm := CategoryTheory.CategoryStruct.id M.Tm, mapTy := CategoryTheory.CategoryStruct.id M.Ty, pb := ⋯ }
Equations
- α.comp β = { mapTm := CategoryTheory.CategoryStruct.comp α.mapTm β.mapTm, mapTy := CategoryTheory.CategoryStruct.comp α.mapTy β.mapTy, pb := ⋯ }
Morphism into the representable natural transformation M
from the pullback of M
along a type.
Equations
- M.pullbackHom A = { mapTm := M.var A, mapTy := A, pb := ⋯ }
Given M : NaturalModelBase
, a semantic type A : y(Γ) ⟶ M.Ty
,
and a substitution σ : Δ ⟶ Γ
, construct a Hom for the substitution A[σ]
.
Equations
- One or more equations did not get rendered due to their size.
A Russell embedding is a hom of natural models M ⟶ N
such that types in M
correspond to terms of a universe U
in N
.
These don't form a category since UHom.id M
is essentially Type : Type
in M
.
Equations
- NaturalModelBase.UHom.ofTyIsoExt H i = { toHom := H, U := U, U_pb := ⋯ }
Equations
- NaturalModelBase.UHom.ofTarskiU M U El = { toHom := M.pullbackHom El, U := U, U_pb := ⋯ }
A sequence of Russell embeddings.
- length : ℕ
Number of embeddings in the sequence, or one less than the number of models in the sequence.
Equations
- NaturalModelBase.UHomSeq.instGetElemNatLtHAddLengthOfNat = { getElem := fun (s : NaturalModelBase.UHomSeq Ctx) (i : ℕ) (h : i < s.length + 1) => s.objs i h }
Composition of embeddings between i
and j
in the chain.
Equations
- One or more equations did not get rendered due to their size.
The data of Π and λ term formers for every i, j ≤ length + 1
, interpreting
Γ ⊢ᵢ A type Γ.A ⊢ⱼ B type
--------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ ΠA. B type
and
Γ ⊢ᵢ A type Γ.A ⊢ⱼ t : B
-------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. t : ΠA. B
This amounts to O(length²)
data.
One might object that the same formation rules could be modeled with O(length)
data:
etc etc
However, with O(length²)
data we can use Lean's own type formers directly,
rather than using Π (ULift A) (ULift B)
.
The interpretations of types are thus more direct.
Equations
- NaturalModelBase.UHomSeqPis.instGetElemNatLtHAddLengthOfNat = { getElem := fun (s : NaturalModelBase.UHomSeqPis Ctx) (i : ℕ) (h : i < s.length + 1) => s.objs i h }
Γ ⊢ᵢ A Γ.A ⊢ⱼ B
-----------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ ΠA. B
Γ ⊢ᵢ A Γ.A ⊢ⱼ t : B
-------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. t : ΠA. B
Γ ⊢ᵢ A Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B
-----------------------------
Γ.A ⊢ⱼ unlam f : B
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B Γ ⊢ᵢ a : A
---------------------------------
Γ ⊢ⱼ f a : B[id.a]
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ f : ΠA. B
--------------------------------------
Γ ⊢ₘₐₓ₍ᵢ,ⱼ₎ λA. f[↑] v₀ : ΠA. B
Equations
- One or more equations did not get rendered due to their size.
Γ ⊢ᵢ A Γ.A ⊢ⱼ t : B Γ ⊢ᵢ a : A
--------------------------------
Γ.A ⊢ⱼ (λA. t) a ≡ t[a] : B[a]