Documentation

GroupoidModel.Russell_PER_MS.Interpretation

Equations
  • One or more equations did not get rendered due to their size.
Instances For

    Extension sequences #

    inductive NaturalModelBase.UHomSeq.ExtSeq {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] (s : UHomSeq ๐’ž) (ฮ“ : ๐’ž) :
    ๐’ž โ†’ Type u

    s.ExtSeq ฮ“ ฮ“' is a diff from the semantic context ฮ“ to ฮ“', where ฮ“ is a prefix of ฮ“'. It witnesses a sequence of context extension operations in s that built ฮ“' on top of ฮ“. We write ฮ“ โ‰ค ฮ“'.

    Instances For
      def NaturalModelBase.UHomSeq.ExtSeq.length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“ ฮ“' : ๐’ž} :
      s.ExtSeq ฮ“ ฮ“' โ†’ โ„•
      Equations
      Instances For
        def NaturalModelBase.UHomSeq.ExtSeq.append {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“โ‚ ฮ“โ‚‚ ฮ“โ‚ƒ : ๐’ž} :
        s.ExtSeq ฮ“โ‚ ฮ“โ‚‚ โ†’ s.ExtSeq ฮ“โ‚‚ ฮ“โ‚ƒ โ†’ s.ExtSeq ฮ“โ‚ ฮ“โ‚ƒ
        Equations
        Instances For
          theorem NaturalModelBase.UHomSeq.ExtSeq.append_assoc {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“โ‚ ฮ“โ‚‚ ฮ“โ‚ƒ ฮ“โ‚„ : ๐’ž} (dโ‚ : s.ExtSeq ฮ“โ‚ ฮ“โ‚‚) (dโ‚‚ : s.ExtSeq ฮ“โ‚‚ ฮ“โ‚ƒ) (dโ‚ƒ : s.ExtSeq ฮ“โ‚ƒ ฮ“โ‚„) :
          dโ‚.append (dโ‚‚.append dโ‚ƒ) = (dโ‚.append dโ‚‚).append dโ‚ƒ
          def NaturalModelBase.UHomSeq.ExtSeq.disp {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“ ฮ“' : ๐’ž} :
          s.ExtSeq ฮ“ ฮ“' โ†’ (ฮ“' โŸถ ฮ“)

          The composite display map associated to a sequence.

          Equations
          Instances For
            def NaturalModelBase.UHomSeq.ExtSeq.substWk {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ” ฮ“ ฮ“' : ๐’ž} (ฯƒ : ฮ” โŸถ ฮ“) :
            s.ExtSeq ฮ“ ฮ“' โ†’ (ฮ”' : ๐’ž) ร— s.ExtSeq ฮ” ฮ”' ร— (ฮ”' โŸถ ฮ“')

            Weaken a substitution and its domain by an extension sequence.

            ฮ” โŠข ฯƒ : ฮ“  d : ฮ“ โ‰ค ฮ“'
            -----------------------------
            ฮ” โ‰ค ฮ”.d[ฯƒ]  ฮ”.d[ฯƒ] โŠข ฯƒ.d : ฮ“'
            

            where

            ฮ” โŠข ฯƒ : ฮ“  d : ฮ“ โ‰ค ฮ“.Aโ‚™.โ€ฆ.Aโ‚
            -----------------------------
            ฮ”.d[ฯƒ] โ‰ก ฮ”.Aโ‚™[ฯƒ].โ€ฆ.Aโ‚[โ‹ฏ]
            
            Equations
            Instances For
              @[simp]
              theorem NaturalModelBase.UHomSeq.ExtSeq.substWk_length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ” ฮ“ ฮ“' : ๐’ž} (ฯƒ : ฮ” โŸถ ฮ“) (d : s.ExtSeq ฮ“ ฮ“') :
              (substWk ฯƒ d).snd.1.length = d.length
              theorem NaturalModelBase.UHomSeq.ExtSeq.substWk_disp {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ” ฮ“ ฮ“' : ๐’ž} (ฯƒ : ฮ” โŸถ ฮ“) (d : s.ExtSeq ฮ“ ฮ“') :
              def NaturalModelBase.UHomSeq.ExtSeq.var {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“ ฮ“' : ๐’ž} {l : โ„•} (llen : l < s.length + 1) :
              s.ExtSeq ฮ“ ฮ“' โ†’ โ„• โ†’ Part (CategoryTheory.yoneda.obj ฮ“' โŸถ s[l].Tm)

              ฮ“.Aโ‚–.โ€ฆ.Aโ‚€ โŠข vโ‚™ : Aโ‚™[โ†‘โฟโบยน]

              Equations
              Instances For
                def NaturalModelBase.UHomSeq.ExtSeq.tp {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“ ฮ“' : ๐’ž} {l : โ„•} (llen : l < s.length + 1) :
                s.ExtSeq ฮ“ ฮ“' โ†’ โ„• โ†’ Part (CategoryTheory.yoneda.obj ฮ“' โŸถ s[l].Ty)

                ฮ“.Aโ‚–.โ€ฆ.Aโ‚€ โŠข Aโ‚™[โ†‘โฟโบยน]

                Equations
                Instances For
                  theorem NaturalModelBase.UHomSeq.ExtSeq.var_tp {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {ฮ“ ฮ“' : ๐’ž} {l : โ„•} (d : s.ExtSeq ฮ“ ฮ“') (llen : l < s.length + 1) (n : โ„•) :
                  theorem NaturalModelBase.UHomSeq.ExtSeq.var_eq_of_lt_length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {l i : โ„•} {llen : l < s.length + 1} {sฮ“ sฮ“' sฮ“'' : ๐’ž} (d : s.ExtSeq sฮ“ sฮ“') (e : s.ExtSeq sฮ“' sฮ“'') :
                  i < e.length โ†’ ExtSeq.var llen (d.append e) i = ExtSeq.var llen e i
                  theorem NaturalModelBase.UHomSeq.ExtSeq.var_append_add_length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {l i : โ„•} {llen : l < s.length + 1} {sฮ“ sฮ“' sฮ“'' : ๐’ž} (d : s.ExtSeq sฮ“ sฮ“') (e : s.ExtSeq sฮ“' sฮ“'') :
                  theorem NaturalModelBase.UHomSeq.ExtSeq.var_substWk_add_length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {l i : โ„•} {llen : l < s.length + 1} {sฮ” sฮ”' sฮ“ sฮ“' : ๐’ž} (d : s.ExtSeq sฮ” sฮ”') (ฯƒ : sฮ”' โŸถ sฮ“) (e : s.ExtSeq sฮ“ sฮ“') :
                  match substWk ฯƒ e with | โŸจfst, (d', snd)โŸฉ => ExtSeq.var llen (d.append d') (i + e.length) = Part.map (fun (x : CategoryTheory.yoneda.obj sฮ”' โŸถ s[l].Tm) => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map d'.disp) x) (ExtSeq.var llen d i)
                  theorem NaturalModelBase.UHomSeq.ExtSeq.var_substWk_of_lt_length {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {l i : โ„•} {ฮ” ฮ“ ฮ“' : ๐’ž} (ฯƒ : ฮ” โŸถ ฮ“) (d : s.ExtSeq ฮ“ ฮ“') (llen : l < s.length + 1) {st : CategoryTheory.yoneda.obj ฮ“' โŸถ s[l].Tm} (st_mem : st โˆˆ ExtSeq.var llen d i) :
                  theorem NaturalModelBase.UHomSeq.ExtSeq.mem_var_liftVar {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeq ๐’ž} {l : โ„•} {llen : l < s.length + 1} {sฮ“ sฮ“' sฮ“'' sฮ˜ : ๐’ž} {st : CategoryTheory.yoneda.obj sฮ“'' โŸถ s[l].Tm} (i : โ„•) (c : s.ExtSeq sฮ“ sฮ“') (d : s.ExtSeq sฮ“' sฮ˜) (e : s.ExtSeq sฮ“' sฮ“'') (st_mem : st โˆˆ ExtSeq.var llen (c.append e) i) :
                  match substWk d.disp e with | โŸจfst, (d', ฯƒ)โŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ) st โˆˆ ExtSeq.var llen ((c.append d).append d') (liftVar d.length i e.length)

                  Contextual objects #

                  A "contextual" object (as in Cartmell's contextual categories), i.e., one of the form 1.Aโ‚™โ‚‹โ‚.โ€ฆ.Aโ‚€, together with the extension sequence [Aโ‚™โ‚‹โ‚ :: โ€ฆ :: Aโ‚€].

                  This kind of object can be destructured.

                  Equations
                  Instances For
                    Equations
                    Instances For
                      @[simp]
                      @[simp]
                      theorem NaturalModelBase.UHomSeq.CObj.snoc_snd {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {l : โ„•} (ฮ“ : s.CObj) (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj ฮ“.fst โŸถ s[l].Ty) :
                      (ฮ“.snoc llen A).snd = ฮ“.snd.snoc llen A
                      def NaturalModelBase.UHomSeq.CObj.append {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“' : ๐’ž} (ฮ“ : s.CObj) (d : s.ExtSeq ฮ“.fst sฮ“') :
                      Equations
                      Instances For
                        @[simp]
                        theorem NaturalModelBase.UHomSeq.CObj.append_fst {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“' : ๐’ž} (ฮ“ : s.CObj) (d : s.ExtSeq ฮ“.fst sฮ“') :
                        (ฮ“.append d).fst = sฮ“'
                        @[simp]
                        theorem NaturalModelBase.UHomSeq.CObj.append_snd {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“' : ๐’ž} (ฮ“ : s.CObj) (d : s.ExtSeq ฮ“.fst sฮ“') :
                        @[simp]
                        theorem NaturalModelBase.UHomSeq.CObj.append_snoc {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“' : ๐’ž} {l : โ„•} (ฮ“ : s.CObj) (d : s.ExtSeq ฮ“.fst sฮ“') (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Ty) :
                        ฮ“.append (d.snoc llen A) = (ฮ“.append d).snoc llen A
                        def NaturalModelBase.UHomSeq.CObj.substWk {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“ sฮ“' : ๐’ž} (ฮ” : s.CObj) (ฯƒ : ฮ”.fst โŸถ sฮ“) (d : s.ExtSeq sฮ“ sฮ“') :
                        (ฮ”' : s.CObj) ร— (ฮ”'.fst โŸถ sฮ“')
                        Equations
                        Instances For
                          @[simp]
                          theorem NaturalModelBase.UHomSeq.CObj.substWk_nil {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“ : ๐’ž} (ฮ” : s.CObj) (ฯƒ : ฮ”.fst โŸถ sฮ“) :
                          ฮ”.substWk ฯƒ ExtSeq.nil = โŸจฮ”, ฯƒโŸฉ
                          theorem NaturalModelBase.UHomSeq.CObj.substWk_snoc {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {sฮ“ sฮ“' : ๐’ž} {l : โ„•} (ฮ” : s.CObj) (ฯƒ : ฮ”.fst โŸถ sฮ“) (d : s.ExtSeq sฮ“ sฮ“') (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Ty) :
                          ฮ”.substWk ฯƒ (d.snoc llen A) = match ฮ”.substWk ฯƒ d with | โŸจฮ”', ฯƒ'โŸฉ => โŸจฮ”'.snoc llen (CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ') A), s[l].substWk ฯƒ' AโŸฉ
                          Equations
                          Instances For
                            theorem NaturalModelBase.UHomSeq.CObj.var_tp {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {l : โ„•} (ฮ“ : s.CObj) (llen : l < s.length + 1) (i : โ„•) :
                            Part.map (fun (x : CategoryTheory.yoneda.obj ฮ“.fst โŸถ s[l].Tm) => CategoryTheory.CategoryStruct.comp x s[l].tp) (ฮ“.var llen i) = ฮ“.tp llen i
                            theorem NaturalModelBase.UHomSeq.CObj.mem_var_liftVar {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] [CategoryTheory.Limits.HasTerminal ๐’ž] {s : UHomSeq ๐’ž} {l : โ„•} {llen : l < s.length + 1} {sฮ“ : s.CObj} {sฮ˜ sฮ“' : ๐’ž} {st : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Tm} (i : โ„•) (d : s.ExtSeq sฮ“.fst sฮ˜) (e : s.ExtSeq sฮ“.fst sฮ“') (st_mem : st โˆˆ (sฮ“.append e).var llen i) :
                            match (sฮ“.append d).substWk d.disp e with | โŸจsฮ”, ฯƒโŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ) st โˆˆ sฮ”.var llen (liftVar d.length i e.length)

                            Interpretation #

                            Instances For
                              Equations
                              Instances For
                                Equations
                                Instances For
                                  theorem NaturalModelBase.UHomSeqPis.snoc_mem_ofCtx {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {ฮ“ : Ctx} {A : Expr} {l : โ„•} {llen : l < s.length + 1} {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Ty} :
                                  sฮ“ โˆˆ s.ofCtx ฮ“ โ†’ sA โˆˆ ofType sฮ“ l A llen โ†’ sฮ“.snoc llen sA โˆˆ s.ofCtx ((A, l) :: ฮ“)

                                  Admissibility of thinning #

                                  theorem NaturalModelBase.UHomSeqPis.mem_ofType_liftN {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {A : Expr} {l : โ„•} {llen : l < s.length + 1} {sฮ“ : s.CObj} {sฮ˜ sฮ“' : ๐’ž} {sA : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Ty} (d : s.ExtSeq sฮ“.fst sฮ˜) (e : s.ExtSeq sฮ“.fst sฮ“') (sA_mem : sA โˆˆ ofType (sฮ“.append e) l A llen) :
                                  match (sฮ“.append d).substWk d.disp e with | โŸจsฮ”, ฯƒโŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ) sA โˆˆ ofType sฮ” l (Expr.liftN d.length A e.length) llen
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_liftN {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {t : Expr} {l : โ„•} {llen : l < s.length + 1} {sฮ“ : s.CObj} {sฮ˜ sฮ“' : ๐’ž} {st : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Tm} (d : s.ExtSeq sฮ“.fst sฮ˜) (e : s.ExtSeq sฮ“.fst sฮ“') (st_mem : st โˆˆ ofTerm (sฮ“.append e) l t llen) :
                                  match (sฮ“.append d).substWk d.disp e with | โŸจsฮ”, ฯƒโŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ) st โˆˆ ofTerm sฮ” l (Expr.liftN d.length t e.length) llen
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofType_lift {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {A : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Ty} (sB : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l'].Ty) (sA_mem : sA โˆˆ ofType sฮ“ l A llen) :
                                  s[l'].wk sB sA โˆˆ ofType (sฮ“.snoc l'len sB) l A.lift llen
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_lift {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {t : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {st : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Tm} (sB : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l'].Ty) (st_mem : st โˆˆ ofTerm sฮ“ l t llen) :
                                  s[l'].wk sB st โˆˆ ofTerm (sฮ“.snoc l'len sB) l t.lift llen

                                  Admissibility of instantiation #

                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_instVar {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {a : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sฮ“' : ๐’ž} {st : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l].Tm} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l'].Tm} (i : โ„•) (sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l'].Ty) (d : s.ExtSeq (s[l'].ext sA) sฮ“') (st_mem : st โˆˆ ((sฮ“.snoc l'len sA).append d).var llen i) (sa_mem : sa โˆˆ ofTerm sฮ“ l' a l'len) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[l'].tp = sA) :
                                  let ฯƒ := s[l'].substCons (CategoryTheory.CategoryStruct.id sฮ“.fst) sA sa โ‹ฏ; match sฮ“.substWk ฯƒ d with | โŸจsฮ”, ฯƒ'โŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ') st โˆˆ ofTerm sฮ” l (instVar i a d.length) llen
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofType_inst {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {B a : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sฮ“' : ๐’ž} {sB : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l'].Ty} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Tm} (sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Ty) (d : s.ExtSeq (sฮ“.snoc llen sA).fst sฮ“') (sB_mem : sB โˆˆ ofType ((sฮ“.snoc llen sA).append d) l' B l'len) (sa_mem : sa โˆˆ ofTerm sฮ“ l a llen) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA) :
                                  let ฯƒ := s[l].substCons (CategoryTheory.CategoryStruct.id sฮ“.fst) sA sa โ‹ฏ; match sฮ“.substWk ฯƒ d with | โŸจsฮ”, ฯƒ'โŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ') sB โˆˆ ofType sฮ” l' (B.inst a d.length) l'len
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_inst {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {t a : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sฮ“' : ๐’ž} {st : CategoryTheory.yoneda.obj sฮ“' โŸถ s[l'].Tm} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Tm} (sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Ty) (d : s.ExtSeq (sฮ“.snoc llen sA).fst sฮ“') (st_mem : st โˆˆ ofTerm ((sฮ“.snoc llen sA).append d) l' t l'len) (sa_mem : sa โˆˆ ofTerm sฮ“ l a llen) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA) :
                                  let ฯƒ := s[l].substCons (CategoryTheory.CategoryStruct.id sฮ“.fst) sA sa โ‹ฏ; match sฮ“.substWk ฯƒ d with | โŸจsฮ”, ฯƒ'โŸฉ => CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯƒ') st โˆˆ ofTerm sฮ” l' (t.inst a d.length) l'len
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofType_inst0 {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {B a : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s.toUHomSeq[l].Ty} {sB : CategoryTheory.yoneda.obj (sฮ“.snoc llen sA).fst โŸถ s[l'].Ty} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Tm} (sB_mem : sB โˆˆ ofType (sฮ“.snoc llen sA) l' B l'len) (sa_mem : sa โˆˆ ofTerm sฮ“ l a llen) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA) :
                                  s[l].inst sA sB sa sa_tp โˆˆ ofType sฮ“ l' (B.inst a) l'len
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_inst0 {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {t a : Expr} {l l' : โ„•} {llen : l < s.length + 1} {l'len : l' < s.length + 1} {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s.toUHomSeq[l].Ty} {st : CategoryTheory.yoneda.obj (sฮ“.snoc llen sA).fst โŸถ s[l'].Tm} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[l].Tm} (st_mem : st โˆˆ ofTerm (sฮ“.snoc llen sA) l' t l'len) (sa_mem : sa โˆˆ ofTerm sฮ“ l a llen) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA) :
                                  s[l].inst sA st sa sa_tp โˆˆ ofTerm sฮ“ l' (t.inst a) l'len

                                  Soundness of interpretation #

                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_app {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {B f a : Expr} {i j : โ„•} (ilen : i < s.length + 1) (jlen : j < s.length + 1) {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i].Ty} {sB : CategoryTheory.yoneda.obj (sฮ“.snoc ilen sA).fst โŸถ s[j].Ty} {sf : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i โŠ” j].Tm} {sa : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i].Tm} (sB_mem : sB โˆˆ ofType (sฮ“.snoc ilen sA) j B jlen) (sf_mem : sf โˆˆ ofTerm sฮ“ (i โŠ” j) f โ‹ฏ) (sf_tp : CategoryTheory.CategoryStruct.comp sf s[i โŠ” j].tp = s.mkPi ilen jlen sA sB) (sa_mem : sa โˆˆ ofTerm sฮ“ i a ilen) (sa_tp : CategoryTheory.CategoryStruct.comp sa s[i].tp = sA) :
                                  s.mkApp ilen jlen sA sB sf sf_tp sa sa_tp โˆˆ ofTerm sฮ“ j (Expr.app i j B f a) jlen
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_lam {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {A t : Expr} {i j : โ„•} (ilen : i < s.length + 1) (jlen : j < s.length + 1) {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i].Ty} {st : CategoryTheory.yoneda.obj (sฮ“.snoc ilen sA).fst โŸถ s[j].Tm} (sA_mem : sA โˆˆ ofType sฮ“ i A ilen) (st_mem : st โˆˆ ofTerm (sฮ“.snoc ilen sA) j t jlen) :
                                  s.mkLam ilen jlen sA st โˆˆ ofTerm sฮ“ (i โŠ” j) (Expr.lam i j A t) โ‹ฏ
                                  theorem NaturalModelBase.UHomSeqPis.mem_ofTerm_etaExpand {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} {A B f : Expr} {i j : โ„•} (ilen : i < s.length + 1) (jlen : j < s.length + 1) {sฮ“ : s.CObj} {sA : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i].Ty} {sB : CategoryTheory.yoneda.obj (sฮ“.snoc ilen sA).fst โŸถ s[j].Ty} {sf : CategoryTheory.yoneda.obj sฮ“.fst โŸถ s[i โŠ” j].Tm} (sA_mem : sA โˆˆ ofType sฮ“ i A ilen) (sB_mem : sB โˆˆ ofType (sฮ“.snoc ilen sA) j B jlen) (sf_mem : sf โˆˆ ofTerm sฮ“ (i โŠ” j) f โ‹ฏ) (sf_tp : CategoryTheory.CategoryStruct.comp sf s[i โŠ” j].tp = s.mkPi ilen jlen sA sB) :
                                  s.etaExpand ilen jlen sA sB sf sf_tp โˆˆ ofTerm sฮ“ (i โŠ” j) (Expr.lam i j A (Expr.app i j (Expr.liftN 1 B 1) f.lift (Expr.bvar 0))) โ‹ฏ
                                  theorem NaturalModelBase.UHomSeqPis.ofType_ofTerm_sound {๐’ž : Type u} [CategoryTheory.SmallCategory ๐’ž] [CategoryTheory.ChosenFiniteProducts ๐’ž] {s : UHomSeqPis ๐’ž} (slen : univMax โ‰ค s.length) :
                                  (โˆ€ {ฮ“ : Ctx} {l : โ„•} {A B : Expr} (Aeq : ฮ“ โŠข[l] A โ‰ก B) {sฮ“ : s.CObj}, sฮ“ โˆˆ s.ofCtx ฮ“ โ†’ let_fun llen := โ‹ฏ; โˆƒ sA โˆˆ ofType sฮ“ l A llen, sA โˆˆ ofType sฮ“ l B llen) โˆง โˆ€ {ฮ“ : Ctx} {l : โ„•} {t u A : Expr} (teq : ฮ“ โŠข[l] t โ‰ก u : A) {sฮ“ : s.CObj}, sฮ“ โˆˆ s.ofCtx ฮ“ โ†’ let_fun llen := โ‹ฏ; โˆƒ sA โˆˆ ofType sฮ“ l A llen, โˆƒ st โˆˆ ofTerm sฮ“ l t llen, st โˆˆ ofTerm sฮ“ l u llen โˆง CategoryTheory.CategoryStruct.comp st s[l].tp = sA