Equations
- One or more equations did not get rendered due to their size.
Instances For
Extension sequences #
inductive
NaturalModelBase.UHomSeq.ExtSeq
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
(s : UHomSeq ๐)
(ฮ : ๐)
:
๐ โ Type u
s.ExtSeq ฮ ฮ'
is a diff from the semantic context ฮ
to ฮ'
,
where ฮ
is a prefix of ฮ'
.
It witnesses a sequence of context extension operations in s
that built ฮ'
on top of ฮ
.
We write ฮ โค ฮ'
.
- nil {๐ : Type u} [CategoryTheory.SmallCategory ๐] [CategoryTheory.ChosenFiniteProducts ๐] {s : UHomSeq ๐} {ฮ : ๐} : s.ExtSeq ฮ ฮ
- snoc {๐ : Type u} [CategoryTheory.SmallCategory ๐] [CategoryTheory.ChosenFiniteProducts ๐] {s : UHomSeq ๐} {ฮ ฮ' : ๐} {l : โ} (d : s.ExtSeq ฮ ฮ') (llen : l < s.length + 1) (A : CategoryTheory.yoneda.obj ฮ' โถ s[l].Ty) : s.ExtSeq ฮ (s[l].ext A)
Instances For
def
NaturalModelBase.UHomSeq.ExtSeq.length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ' : ๐}
:
Instances For
def
NaturalModelBase.UHomSeq.ExtSeq.append
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮโ ฮโ ฮโ : ๐}
:
Equations
Instances For
theorem
NaturalModelBase.UHomSeq.ExtSeq.append_assoc
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮโ ฮโ ฮโ ฮโ : ๐}
(dโ : s.ExtSeq ฮโ ฮโ)
(dโ : s.ExtSeq ฮโ ฮโ)
(dโ : s.ExtSeq ฮโ ฮโ)
:
def
NaturalModelBase.UHomSeq.ExtSeq.disp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ' : ๐}
:
The composite display map associated to a sequence.
Equations
Instances For
def
NaturalModelBase.UHomSeq.ExtSeq.substWk
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ ฮ' : ๐}
(ฯ : ฮ โถ ฮ)
:
Weaken a substitution and its domain by an extension sequence.
ฮ โข ฯ : ฮ d : ฮ โค ฮ'
-----------------------------
ฮ โค ฮ.d[ฯ] ฮ.d[ฯ] โข ฯ.d : ฮ'
where
ฮ โข ฯ : ฮ d : ฮ โค ฮ.Aโ.โฆ.Aโ
-----------------------------
ฮ.d[ฯ] โก ฮ.Aโ[ฯ].โฆ.Aโ[โฏ]
Equations
Instances For
@[simp]
theorem
NaturalModelBase.UHomSeq.ExtSeq.substWk_length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ ฮ' : ๐}
(ฯ : ฮ โถ ฮ)
(d : s.ExtSeq ฮ ฮ')
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.substWk_disp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ ฮ' : ๐}
(ฯ : ฮ โถ ฮ)
(d : s.ExtSeq ฮ ฮ')
:
def
NaturalModelBase.UHomSeq.ExtSeq.var
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ' : ๐}
{l : โ}
(llen : l < s.length + 1)
:
ฮ.Aโ.โฆ.Aโ โข vโ : Aโ[โโฟโบยน]
Equations
Instances For
def
NaturalModelBase.UHomSeq.ExtSeq.tp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ' : ๐}
{l : โ}
(llen : l < s.length + 1)
:
ฮ.Aโ.โฆ.Aโ โข Aโ[โโฟโบยน]
Equations
Instances For
theorem
NaturalModelBase.UHomSeq.ExtSeq.var_tp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{ฮ ฮ' : ๐}
{l : โ}
(d : s.ExtSeq ฮ ฮ')
(llen : l < s.length + 1)
(n : โ)
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.var_eq_of_lt_length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{l i : โ}
{llen : l < s.length + 1}
{sฮ sฮ' sฮ'' : ๐}
(d : s.ExtSeq sฮ sฮ')
(e : s.ExtSeq sฮ' sฮ'')
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.var_append_add_length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{l i : โ}
{llen : l < s.length + 1}
{sฮ sฮ' sฮ'' : ๐}
(d : s.ExtSeq sฮ sฮ')
(e : s.ExtSeq sฮ' sฮ'')
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.var_substWk_add_length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{l i : โ}
{llen : l < s.length + 1}
{sฮ sฮ' sฮ sฮ' : ๐}
(d : s.ExtSeq sฮ sฮ')
(ฯ : sฮ' โถ sฮ)
(e : s.ExtSeq sฮ sฮ')
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.var_substWk_of_lt_length
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{l i : โ}
{ฮ ฮ ฮ' : ๐}
(ฯ : ฮ โถ ฮ)
(d : s.ExtSeq ฮ ฮ')
(llen : l < s.length + 1)
{st : CategoryTheory.yoneda.obj ฮ' โถ s[l].Tm}
(st_mem : st โ ExtSeq.var llen d i)
:
theorem
NaturalModelBase.UHomSeq.ExtSeq.mem_var_liftVar
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeq ๐}
{l : โ}
{llen : l < s.length + 1}
{sฮ sฮ' sฮ'' sฮ : ๐}
{st : CategoryTheory.yoneda.obj sฮ'' โถ s[l].Tm}
(i : โ)
(c : s.ExtSeq sฮ sฮ')
(d : s.ExtSeq sฮ' sฮ)
(e : s.ExtSeq sฮ' sฮ'')
(st_mem : st โ ExtSeq.var llen (c.append e) i)
:
Contextual objects #
def
NaturalModelBase.UHomSeq.CObj
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
(s : UHomSeq ๐)
:
Type u
A "contextual" object (as in Cartmell's contextual categories),
i.e., one of the form 1.Aโโโ.โฆ.Aโ
,
together with the extension sequence [Aโโโ :: โฆ :: Aโ]
.
This kind of object can be destructured.
Instances For
def
NaturalModelBase.UHomSeq.nilCObj
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
(s : UHomSeq ๐)
:
s.CObj
Equations
Instances For
def
NaturalModelBase.UHomSeq.CObj.snoc
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(A : CategoryTheory.yoneda.obj ฮ.fst โถ s[l].Ty)
:
s.CObj
Instances For
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.snoc_fst
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(A : CategoryTheory.yoneda.obj ฮ.fst โถ s[l].Ty)
:
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.snoc_snd
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(A : CategoryTheory.yoneda.obj ฮ.fst โถ s[l].Ty)
:
def
NaturalModelBase.UHomSeq.CObj.append
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ' : ๐}
(ฮ : s.CObj)
(d : s.ExtSeq ฮ.fst sฮ')
:
s.CObj
Equations
- ฮ.append d = โจsฮ', ฮ.snd.append dโฉ
Instances For
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.append_fst
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ' : ๐}
(ฮ : s.CObj)
(d : s.ExtSeq ฮ.fst sฮ')
:
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.append_snd
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ' : ๐}
(ฮ : s.CObj)
(d : s.ExtSeq ฮ.fst sฮ')
:
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.append_nil
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
(ฮ : s.CObj)
:
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.append_snoc
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ' : ๐}
{l : โ}
(ฮ : s.CObj)
(d : s.ExtSeq ฮ.fst sฮ')
(llen : l < s.length + 1)
(A : CategoryTheory.yoneda.obj sฮ' โถ s[l].Ty)
:
def
NaturalModelBase.UHomSeq.CObj.substWk
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ sฮ' : ๐}
(ฮ : s.CObj)
(ฯ : ฮ.fst โถ sฮ)
(d : s.ExtSeq sฮ sฮ')
:
Equations
- ฮ.substWk ฯ d = match NaturalModelBase.UHomSeq.ExtSeq.substWk ฯ d with | โจฮ', (d', ฯ')โฉ => โจโจฮ', ฮ.snd.append d'โฉ, ฯ'โฉ
Instances For
@[simp]
theorem
NaturalModelBase.UHomSeq.CObj.substWk_nil
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ : ๐}
(ฮ : s.CObj)
(ฯ : ฮ.fst โถ sฮ)
:
theorem
NaturalModelBase.UHomSeq.CObj.substWk_snoc
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{sฮ sฮ' : ๐}
{l : โ}
(ฮ : s.CObj)
(ฯ : ฮ.fst โถ sฮ)
(d : s.ExtSeq sฮ sฮ')
(llen : l < s.length + 1)
(A : CategoryTheory.yoneda.obj sฮ' โถ s[l].Ty)
:
ฮ.substWk ฯ (d.snoc llen A) = match ฮ.substWk ฯ d with
| โจฮ', ฯ'โฉ => โจฮ'.snoc llen (CategoryTheory.CategoryStruct.comp (CategoryTheory.yoneda.map ฯ') A), s[l].substWk ฯ' Aโฉ
def
NaturalModelBase.UHomSeq.CObj.var
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(i : โ)
:
Equations
Instances For
def
NaturalModelBase.UHomSeq.CObj.tp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(i : โ)
:
Equations
Instances For
theorem
NaturalModelBase.UHomSeq.CObj.var_tp
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
(ฮ : s.CObj)
(llen : l < s.length + 1)
(i : โ)
:
theorem
NaturalModelBase.UHomSeq.CObj.mem_var_liftVar
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
[CategoryTheory.Limits.HasTerminal ๐]
{s : UHomSeq ๐}
{l : โ}
{llen : l < s.length + 1}
{sฮ : s.CObj}
{sฮ sฮ' : ๐}
{st : CategoryTheory.yoneda.obj sฮ' โถ s[l].Tm}
(i : โ)
(d : s.ExtSeq sฮ.fst sฮ)
(e : s.ExtSeq sฮ.fst sฮ')
(st_mem : st โ (sฮ.append e).var llen i)
:
Interpretation #
def
NaturalModelBase.UHomSeqPis.ofType
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
(ฮ : s.CObj)
(l : โ)
:
Instances For
def
NaturalModelBase.UHomSeqPis.ofTerm
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
(ฮ : s.CObj)
(l : โ)
:
Equations
- One or more equations did not get rendered due to their size.
- NaturalModelBase.UHomSeqPis.ofTerm ฮ l (Expr.bvar i) x = ฮ.var x i
- NaturalModelBase.UHomSeqPis.ofTerm ฮ l t.code x = Part.assert (0 < l) fun (lpos : 0 < l) => do let A โ NaturalModelBase.UHomSeqPis.ofType ฮ (l - 1) t โฏ pure (cast โฏ (s.code โฏ A))
- NaturalModelBase.UHomSeqPis.ofTerm ฮ l x x_1 = Part.none
Instances For
def
NaturalModelBase.UHomSeqPis.ofCtx
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
(s : UHomSeqPis ๐)
:
Instances For
theorem
NaturalModelBase.UHomSeqPis.snoc_mem_ofCtx
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{ฮ : Ctx}
{A : Expr}
{l : โ}
{llen : l < s.length + 1}
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Ty}
:
Admissibility of thinning #
theorem
NaturalModelBase.UHomSeqPis.mem_ofType_liftN
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{A : Expr}
{l : โ}
{llen : l < s.length + 1}
{sฮ : s.CObj}
{sฮ sฮ' : ๐}
{sA : CategoryTheory.yoneda.obj sฮ' โถ s[l].Ty}
(d : s.ExtSeq sฮ.fst sฮ)
(e : s.ExtSeq sฮ.fst sฮ')
(sA_mem : sA โ ofType (sฮ.append e) l A llen)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_liftN
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{t : Expr}
{l : โ}
{llen : l < s.length + 1}
{sฮ : s.CObj}
{sฮ sฮ' : ๐}
{st : CategoryTheory.yoneda.obj sฮ' โถ s[l].Tm}
(d : s.ExtSeq sฮ.fst sฮ)
(e : s.ExtSeq sฮ.fst sฮ')
(st_mem : st โ ofTerm (sฮ.append e) l t llen)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofType_lift
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{A : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Ty}
(sB : CategoryTheory.yoneda.obj sฮ.fst โถ s[l'].Ty)
(sA_mem : sA โ ofType sฮ l A llen)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_lift
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{t : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{st : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Tm}
(sB : CategoryTheory.yoneda.obj sฮ.fst โถ s[l'].Ty)
(st_mem : st โ ofTerm sฮ l t llen)
:
Admissibility of instantiation #
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_instVar
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{a : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sฮ' : ๐}
{st : CategoryTheory.yoneda.obj sฮ' โถ s[l].Tm}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[l'].Tm}
(i : โ)
(sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[l'].Ty)
(d : s.ExtSeq (s[l'].ext sA) sฮ')
(st_mem : st โ ((sฮ.snoc l'len sA).append d).var llen i)
(sa_mem : sa โ ofTerm sฮ l' a l'len)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[l'].tp = sA)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofType_inst
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{B a : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sฮ' : ๐}
{sB : CategoryTheory.yoneda.obj sฮ' โถ s[l'].Ty}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Tm}
(sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Ty)
(d : s.ExtSeq (sฮ.snoc llen sA).fst sฮ')
(sB_mem : sB โ ofType ((sฮ.snoc llen sA).append d) l' B l'len)
(sa_mem : sa โ ofTerm sฮ l a llen)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_inst
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{t a : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sฮ' : ๐}
{st : CategoryTheory.yoneda.obj sฮ' โถ s[l'].Tm}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Tm}
(sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Ty)
(d : s.ExtSeq (sฮ.snoc llen sA).fst sฮ')
(st_mem : st โ ofTerm ((sฮ.snoc llen sA).append d) l' t l'len)
(sa_mem : sa โ ofTerm sฮ l a llen)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofType_inst0
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{B a : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s.toUHomSeq[l].Ty}
{sB : CategoryTheory.yoneda.obj (sฮ.snoc llen sA).fst โถ s[l'].Ty}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Tm}
(sB_mem : sB โ ofType (sฮ.snoc llen sA) l' B l'len)
(sa_mem : sa โ ofTerm sฮ l a llen)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_inst0
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{t a : Expr}
{l l' : โ}
{llen : l < s.length + 1}
{l'len : l' < s.length + 1}
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s.toUHomSeq[l].Ty}
{st : CategoryTheory.yoneda.obj (sฮ.snoc llen sA).fst โถ s[l'].Tm}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[l].Tm}
(st_mem : st โ ofTerm (sฮ.snoc llen sA) l' t l'len)
(sa_mem : sa โ ofTerm sฮ l a llen)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[l].tp = sA)
:
Soundness of interpretation #
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_app
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{B f a : Expr}
{i j : โ}
(ilen : i < s.length + 1)
(jlen : j < s.length + 1)
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[i].Ty}
{sB : CategoryTheory.yoneda.obj (sฮ.snoc ilen sA).fst โถ s[j].Ty}
{sf : CategoryTheory.yoneda.obj sฮ.fst โถ s[i โ j].Tm}
{sa : CategoryTheory.yoneda.obj sฮ.fst โถ s[i].Tm}
(sB_mem : sB โ ofType (sฮ.snoc ilen sA) j B jlen)
(sf_mem : sf โ ofTerm sฮ (i โ j) f โฏ)
(sf_tp : CategoryTheory.CategoryStruct.comp sf s[i โ j].tp = s.mkPi ilen jlen sA sB)
(sa_mem : sa โ ofTerm sฮ i a ilen)
(sa_tp : CategoryTheory.CategoryStruct.comp sa s[i].tp = sA)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_lam
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{A t : Expr}
{i j : โ}
(ilen : i < s.length + 1)
(jlen : j < s.length + 1)
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[i].Ty}
{st : CategoryTheory.yoneda.obj (sฮ.snoc ilen sA).fst โถ s[j].Tm}
(sA_mem : sA โ ofType sฮ i A ilen)
(st_mem : st โ ofTerm (sฮ.snoc ilen sA) j t jlen)
:
theorem
NaturalModelBase.UHomSeqPis.mem_ofTerm_etaExpand
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
{A B f : Expr}
{i j : โ}
(ilen : i < s.length + 1)
(jlen : j < s.length + 1)
{sฮ : s.CObj}
{sA : CategoryTheory.yoneda.obj sฮ.fst โถ s[i].Ty}
{sB : CategoryTheory.yoneda.obj (sฮ.snoc ilen sA).fst โถ s[j].Ty}
{sf : CategoryTheory.yoneda.obj sฮ.fst โถ s[i โ j].Tm}
(sA_mem : sA โ ofType sฮ i A ilen)
(sB_mem : sB โ ofType (sฮ.snoc ilen sA) j B jlen)
(sf_mem : sf โ ofTerm sฮ (i โ j) f โฏ)
(sf_tp : CategoryTheory.CategoryStruct.comp sf s[i โ j].tp = s.mkPi ilen jlen sA sB)
:
theorem
NaturalModelBase.UHomSeqPis.ofType_ofTerm_sound
{๐ : Type u}
[CategoryTheory.SmallCategory ๐]
[CategoryTheory.ChosenFiniteProducts ๐]
{s : UHomSeqPis ๐}
(slen : univMax โค s.length)
:
(โ {ฮ : Ctx} {l : โ} {A B : Expr} (Aeq : ฮ โข[l] A โก B) {sฮ : s.CObj},
sฮ โ s.ofCtx ฮ โ
let_fun llen := โฏ;
โ sA โ ofType sฮ l A llen, sA โ ofType sฮ l B llen) โง โ {ฮ : Ctx} {l : โ} {t u A : Expr} (teq : ฮ โข[l] t โก u : A) {sฮ : s.CObj},
sฮ โ s.ofCtx ฮ โ
let_fun llen := โฏ;
โ sA โ ofType sฮ l A llen,
โ st โ ofTerm sฮ l t llen, st โ ofTerm sฮ l u llen โง CategoryTheory.CategoryStruct.comp st s[l].tp = sA